Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Adv Respir Med ; 89(6): 589-596, 2021.
Article in English | MEDLINE | ID: covidwho-1595790

ABSTRACT

The current COVID-19 pandemic has spread like wildfire worldwide and has affected millions of people. The novel corona virus mainly affects the lungs leading to life threatening disease like acute respiratory distress syndrome (ARDS). The aftermath of the disease in form of pulmonary fibrosis is upcoming cause of further increase in morbidity and mortality. Nintedanib is an oral antifibrotics with proven role in idiopathic pulmonary fibrosis, however its use in COVID-19 related pulmonary fibrosis has not been studied. We report our early experience of use of nintedanib in COVID-19 related pulmonary fibrosis.


Subject(s)
COVID-19 Drug Treatment , Idiopathic Pulmonary Fibrosis/drug therapy , Indoles/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory System Agents/therapeutic use , COVID-19/diet therapy , Humans , Idiopathic Pulmonary Fibrosis/etiology , Respiratory Distress Syndrome/etiology
2.
Adv Drug Deliv Rev ; 176: 113901, 2021 09.
Article in English | MEDLINE | ID: covidwho-1329631

ABSTRACT

Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.


Subject(s)
Drug Evaluation, Preclinical/methods , Lung , Models, Biological , Respiratory System Agents/therapeutic use , Animals , Bioengineering , Humans , Translational Science, Biomedical
3.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: covidwho-1302391

ABSTRACT

There is a vast practice of using antimalarial drugs, RAS inhibitors, serine protease inhibitors, inhibitors of the RNA-dependent RNA polymerase of the virus and immunosuppressants for the treatment of the severe form of COVID-19, which often occurs in patients with chronic diseases and older persons. Currently, the clinical efficacy of these drugs for COVID-19 has not been proven yet. Side effects of antimalarial drugs can worsen the condition of patients and increase the likelihood of death. Peptides, given their physiological mechanism of action, have virtually no side effects. Many of them are geroprotectors and can be used in patients with chronic diseases. Peptides may be able to prevent the development of the pathological process during COVID-19 by inhibiting SARS-CoV-2 virus proteins, thereby having immuno- and bronchoprotective effects on lung cells, and normalizing the state of the hemostasis system. Immunomodulators (RKDVY, EW, KE, AEDG), possessing a physiological mechanism of action at low concentrations, appear to be the most promising group among the peptides. They normalize the cytokines' synthesis and have an anti-inflammatory effect, thereby preventing the development of disseminated intravascular coagulation, acute respiratory distress syndrome and multiple organ failure.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Peptides/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory System Agents/therapeutic use , Acute Disease , Anti-Inflammatory Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Betacoronavirus/drug effects , Betacoronavirus/growth & development , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/complications , Disseminated Intravascular Coagulation/diagnosis , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/virology , Host-Pathogen Interactions/drug effects , Humans , Immunologic Factors/chemical synthesis , Lung/blood supply , Lung/drug effects , Lung/pathology , Lung/virology , Pandemics , Peptides/chemical synthesis , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Respiratory Insufficiency/complications , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/prevention & control , Respiratory Insufficiency/virology , Respiratory System Agents/chemical synthesis , SARS-CoV-2 , Structure-Activity Relationship
4.
Crit Care Med ; 49(2): e191-e198, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-889603

ABSTRACT

OBJECTIVES: Treating acute respiratory failure in patients with coronavirus disease 2019 is challenging due to the lack of knowledge of the underlying pathophysiology. Hypoxemia may be explained in part by the loss of hypoxic pulmonary vasoconstriction. The present study assessed the effect of almitrine, a selective pulmonary vasoconstrictor, on arterial oxygenation in severe acute respiratory syndrome coronavirus 2-induced acute respiratory distress syndrome. DESIGN: Single-center retrospective observational study. SETTING: ICU of Lille Teaching Hospital, France, from February 27, 2020, to April 14, 2020. PATIENTS: Patients with coronavirus disease 2019 pneumonia confirmed by positive reverse transcriptase-polymerase chain reaction for severe acute respiratory syndrome-coronavirus 2 and acute respiratory distress syndrome according to Berlin definition. Data focused on clinicobiological features, ventilator settings, therapeutics, outcomes, and almitrine-related adverse events. INTERVENTIONS: Almitrine was considered in patients with severe hypoxemia (Pao2/Fio2 ratio < 150 mm Hg) in addition to the recommended therapies, at an hourly IV delivery of 10 µg/kg/min. Comparative blood gases were done before starting almitrine trial and immediately after the end of the infusion. A positive response to almitrine was defined by an increase of Pao2/Fio2 ratio greater than or equal to 20% at the end of the infusion. MEASUREMENTS AND MAIN RESULTS: A total of 169 patients were enrolled. Thirty-two patients with acute respiratory distress syndrome received an almitrine infusion trial. In most cases, almitrine was infused in combination with inhaled nitric oxide (75%). Twenty-one patients (66%) were responders. The median Pao2/Fio2 ratio improvement was 39% (9-93%) and differs significantly between the responders and nonresponders (67% [39-131%] vs 6% [9-16%], respectively; p < 0.0001). The 28-day mortality rates were 47.6% and 63.6% (p = 0.39) for the responders and nonresponders, respectively. Hemodynamic parameters remained similar before and after the trial, not suggesting acute cor pulmonale. CONCLUSIONS: Almitrine infusion improved oxygenation in severe acute respiratory syndrome coronavirus 2-induced acute respiratory distress syndrome without adverse effects. In a multistep clinical approach to manage severe hypoxemia in this population, almitrine could be an interesting therapeutic option to counteract the loss of hypoxic pulmonary vasoconstriction and redistribute blood flow away from shunting zones.


Subject(s)
Almitrine/therapeutic use , COVID-19 Drug Treatment , Respiratory Distress Syndrome/drug therapy , Respiratory System Agents/therapeutic use , COVID-19/complications , Critical Care/methods , Dose-Response Relationship, Drug , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Pulmonary Gas Exchange/drug effects , Respiratory Distress Syndrome/etiology , Retrospective Studies
6.
Mol Med ; 26(1): 58, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-599124

ABSTRACT

In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Erythropoietin/therapeutic use , Neuroprotective Agents/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory System Agents/therapeutic use , Brain Stem/drug effects , Brain Stem/immunology , Brain Stem/virology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Double-Blind Method , Humans , Lung/drug effects , Lung/immunology , Lung/virology , Pandemics , Phrenic Nerve/drug effects , Phrenic Nerve/immunology , Phrenic Nerve/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proof of Concept Study , Randomized Controlled Trials as Topic , Recombinant Proteins/therapeutic use , Respiratory Muscles/drug effects , Respiratory Muscles/immunology , Respiratory Muscles/virology , SARS-CoV-2 , Severity of Illness Index , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/virology
8.
Pharmacol Res ; 157: 104881, 2020 07.
Article in English | MEDLINE | ID: covidwho-165166

ABSTRACT

The average respiration rate for an adult is 12-20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature - airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs.


Subject(s)
Granulocytes/drug effects , Respiratory System Agents/therapeutic use , Respiratory System/drug effects , Respiratory Tract Diseases/drug therapy , Animals , Chemotaxis, Leukocyte/drug effects , Granulocytes/immunology , Granulocytes/metabolism , Humans , Inflammation Mediators/metabolism , Molecular Targeted Therapy , Phenotype , Respiratory System/immunology , Respiratory System/metabolism , Respiratory System/physiopathology , Respiratory System Agents/adverse effects , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/metabolism , Respiratory Tract Diseases/physiopathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL